首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

代数 >> 线性代数 >> 线性变换
Questions in category: 线性变换 (Linear transformation).

对于 $v=(v_1,v_2,\ldots,v_n)$, $w=(w_1,w_2,\ldots,w_n)\in\mathbb{Q}^n$, 定义内积 $\langle v,w\rangle=v_1 w_1+v_2 w_2+\cdots+v_n w_n$. 称 $\sigma$ 是正交变换, 如果对任意 $v,w$, 均有 $\langle\sigma(v),\sigma(w)\rangle=\langle v,w\rangle$. 求证: 对任意正交变换 $\sigma$, 存在正交变换 $\tau_1,\tau_2,\ldots,\tau_k$, 使得 $\sigma=\tau_1 \tau_2 \cdots \tau_k$, 其中 $\{v\in V\mid\tau_i(v)=v\}$ 的维数为 $n-1$.

Posted by haifeng on 2025-10-25 20:12:10 last update 2025-10-25 20:12:10 | Answers (0)


对于 $v=(v_1,v_2,\ldots,v_n)$, $w=(w_1,w_2,\ldots,w_n)\in\mathbb{Q}^n$, 定义内积

\[\langle v,w\rangle=v_1 w_1+v_2 w_2+\cdots+v_n w_n.\]

称 $\sigma$ 是正交变换, 如果对任意 $v,w$, 均有 $\langle\sigma(v),\sigma(w)\rangle=\langle v,w\rangle$.

求证: 对任意正交变换 $\sigma$, 存在正交变换 $\tau_1,\tau_2,\ldots,\tau_k$, 使得 $\sigma=\tau_1 \tau_2 \cdots \tau_k$, 其中 $\{v\in V\mid\tau_i(v)=v\}$ 的维数为 $n-1$.